

Technologieeinsatz: Kurven in Polarkoordinaten

TI-Nspire

👌 1: Aktionen) 🤝 🗘 🕨	<
🗟 2: Ansicht		٦
A 3: Graph-Eingat	₩ 1: Funktion	٦
禄 4: Fenster/Zoom	💠 2: Gleichung 🛛 🛛 🖡	▶
/̃∏ 5: Spur	🕂 3: Parametrisch	
💆 6: Graph analysi	🏶 4: Polar	
🎬 7: Tabelle	🔄 5: Streudiagramm	ĺ
nie Geometry 🕹	🖳 6: Folge 🛛 🖡	•
👬 9: Einstellungen	2: Differentialgleichung	

In der Applikation Graphs wird im Menü 3: Graph-Eingabe/Bearbeitung, 4: Polar gewählt. Als Winkelmaß wird meist das Bogenmaß verwendet.

- ZB: 1) Stelle die Goldene Spirale $r(\phi) = r_0^{\frac{2 \cdot \phi}{\pi}}$ mit $r_0 = \sqrt{2}$ dar.
 - **2)** Gib die Radien zu $\varphi \in [0; 4\pi]$ in $\frac{\pi}{2}$ Schritten an. Was fällt dir auf? Überlege zuerst, wie sich der Radius jeweils bei einer halben Drehung ändert.

Lösung:

2) Wertetabelle

Tabellenanfang: 0. Schrittweite:

Unabhängig:

Abhängig:

π/2

Auto

Auto

- Die Funktion in der Eingabezeile wird nun mit $r1(\theta)$ bezeichnet. θ kann mithilfe der Pi-Palette eingegeben werden.
- Der Bereich für θ wird ebenfalls in der Eingabezeile angegeben.
- Anschließend werden die Fenstereinstellungen gewählt.
- Um gegebenenfalls eine unverzerrte Darstellung zu erhalten, wird im Menu 4: Fenster/Zoom, B: Zoom - Quadrat ausgewählt.
- Die Funktionswerte können der Wertetabelle entnommen werden. Diese wird mit 7: Tabelle, 1: Tabelle mit geteiltem Bildschirm angezeigt.
 - Die Schrittweite wird in menu 2: Wertetabelle, 5: Funktionseinstellungen bearbeiten... eingestellt.

Der Radius wächst bei jeder Vierteldrehung um den Faktor $\sqrt{2}$.

2.82842.

Δ • •

5.28318.

-6.67