

## Technologieeinsatz: Exponentialfunktionen

## Mathcad

Die Exponentialfunktion e<sup>x</sup> wird mithilfe des Symbols <sup>e<sup>x</sup></sup> aus der Symbolleiste **Taschenrechner** oder des Buchstabens **e** eingegeben.

| Taschenrechner |                    |                       |            |                |  |
|----------------|--------------------|-----------------------|------------|----------------|--|
| sin            | cos                | tan                   | In         | log            |  |
| n!             | i                  | $\left \times\right $ | L          | ٦٢             |  |
| e×             | $\frac{1}{\times}$ | ()                    | $\times^2$ | $\times^{\!Y}$ |  |
| π              | 7                  | 8                     | 9          | 7              |  |
| li 🕂           | 4                  | 5                     | 6          | ×              |  |
| ÷              | 1                  | 2                     | 3          | +              |  |
| =              | •                  | 0                     | -          | =              |  |

ZB: Stelle die Exponentialfunktionen grafisch dar. Vergleiche die Graphen und beschreibe die Unterschiede bzw. die Gemeinsamkeiten.

**1)**  $y_1 = 0.5^x$  **2)**  $y_2 = 2^x$  **3)**  $y_3 = 3^x$  **4)**  $y_4 = 2^{-x}$  **5)**  $y_5 = e^x$ Lösung:

Losung.



- Die Funktionsgleichungen werden der Reihe nach – jeweils durch einen Beistrich getrennt – eingegeben.
- Die Darstellung der "Spuren" kann im Formatierungsfenster (Doppelklicken in das Diagramm) geändert werden.

Die Funktionsgraphen von  $y_2$ ,  $y_3$  und  $y_5$  sind streng monoton steigend, da die Basis a größer als 1 und der Exponent positiv ist. Die Funktionen steigen umso schneller, je größer die Basis ist. Die Funktionsgraphen von  $y_1$  und  $y_4$  fallen zusammen, da sie dieselbe Funktion darstellen. Sie sind streng monoton fallend.